Differences
This shows you the differences between two versions of the page.
templates:mathematical [2025/03/15 23:21] – created root | templates:mathematical [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Theorem Name ====== | ||
- | ===== Statement ===== | ||
- | |||
- | **Theorem: | ||
- | |||
- | ===== Prerequisites ===== | ||
- | |||
- | To understand this proof, you should be familiar with: | ||
- | * [[path: | ||
- | * [[path: | ||
- | |||
- | ===== Intuition ===== | ||
- | |||
- | [Brief explanation of the intuitive meaning of the theorem and why it matters] | ||
- | |||
- | ===== Proof ===== | ||
- | |||
- | **Lemma 1:** [If needed, state any supporting lemmas] | ||
- | |||
- | [Proof of supporting lemma] | ||
- | |||
- | **Main Proof:** | ||
- | |||
- | [Step-by-step proof using LaTeX for mathematical notation] | ||
- | |||
- | Let $X$ be a set such that $X = \{x \in \mathbb{R} : x > 0\}$. | ||
- | |||
- | We wish to prove that $\forall x \in X, \exists y \in \mathbb{R}$ such that $y^2 = x$. | ||
- | |||
- | Step 1: [First step of proof] | ||
- | |||
- | $$ | ||
- | \text{Mathematical expression here} | ||
- | $$ | ||
- | |||
- | Step 2: [Second step of proof] | ||
- | |||
- | Step n: [Final step of proof] | ||
- | |||
- | Therefore, [conclusion]. ■ | ||
- | |||
- | ===== Alternative Proofs ===== | ||
- | |||
- | **Alternative Proof 1:** [If applicable] | ||
- | |||
- | [Details of alternative approach] | ||
- | |||
- | ===== Applications ===== | ||
- | |||
- | [Discussion of important applications or consequences] | ||
- | |||
- | ===== Historical Notes ===== | ||
- | |||
- | [Brief historical context about the theorem and its development] | ||
- | |||
- | ===== References ===== | ||
- | |||
- | * [1] Author, A. (Year). *Title of Book*. Publisher. | ||
- | * [2] Author, B. (Year). "Title of Paper." | ||
- | |||
- | ===== Related Theorems ===== | ||
- | |||
- | * [[path: | ||
- | * [[path: | ||
- | |||
- | ~~DISCUSSION~~ |